페이지 이미지
PDF
ePub

who can read Sir Charles Lyell's grand work on the Principles of Geology, which the future historian will recognise as having produced a rev olution in natural science, yet does not admit how incomprehensibly vast have been the past periods of time, may at once close this volume. Not that it suffices to study the Principles of Geology, or to read special treatises by different observers on separate formations, and to mark how each author attempts to give an inadequate idea of the duration of each formation or even each stratum. A man must for years examine for himself great piles of superimposed strata, and watch the sea at work grinding down old rocks and making fresh sediment, before he can hope to comprehend anything of the lapse of time, the monuments of which we see around us.

It is good to wander along lines of sea-coast, when formed of moderately hard rocks, and mark the process of degradation. The tides in most cases reach the cliffs only for a short time twice a day, and the waves eat into them only when they are charged with sand or pebbles; for there is reason to believe that pure water can effect little or nothing in wearing away rock. At last the base of the cliff is undermined, huge fragments fall down, and these remaining fixed, have to be worn away, atom by atom, until reduced in size they can be rolled about by the waves, and then are more quickly ground into pebbles, sand, or mud But how often do we see along the bases of retreating cliffs, rounded boulders, all thickly clothed by marine productions, showing how little they are abraded and how seldom they are rolled about! Moreover, if we follow for a few miles any line of rocky cliff, which is undergoing degradation, we find that it is only here and there, along a short length or round a promontory, that the cliffs are at the present time suffering. The appearance of the surface and the vegetation show that elsewhere years have elapsed since the waters washed their base.

He who most closely studies the action of the sea on our shores, will, I believe, be most deeply impressed with the slowness with which rocky coasts are worn, away, The observations on this head by Hugh Miller, and by that excellent observer Mr. Smith of Jordan Hill, are most impressive. With the mind thus impressed, let any one examine beds of conglomerate many thousand feet in thickness, which, though probably formed at a quicker rate than many other deposits, yet, from being formed of worn and rounded pebbles, each of which bears the stamp of time, are good to show how slowly the mass has been accumulated. Let him remember Lyell's profound remark, that the thickness and extent of sedimentary formations are the result and measure of the degradation which the earth's crust has elsewhere suffered. And what an amount of degradation is implied by the sedimentary deposits of many countries! Professor Ramsay has given me the maximum thickness, in most cases from actual measurement, in a few cases from estimate, of each formation in different parts of Great Britain; and this is the result:—

Feet

Paleozoic strata (not including igneous beds) 57,154

Secondary strata 13,190

Tertiary strata" 2,240

—making altogether 72,584 feet; that is, very nearly thirteen and three-quarters British miles. Some of these formations, which are represented in England by thin beds, are thousands of feet in thickness on the Continent . Moreover, between each successive formation, we have, in the opinion of most geologists, enormously long blank periods. So that the lofty pile of sedimentary rocks in Britain, gives but an inadequate idea of the time which has elapsed during their accumulation; yet what time this must have consumed! Good observers have estimated that sediment is deposited by the great Mississippi River at the rate of only 600 feet in a hundred thousand years. This estimate may be quite erroneous; yet, considering over what wide spaces very fine sediment is transported by the currents of the sea, the process of accumulation in any one area must be extremely slow.

But the amount of denudation'which the strata have in many places suffered, independently of the rate of accumulation of the degraded matter, probably offers the best evidence of the lapse of time. I remember Having been much struck with the evidence of denudation, when viewing volcanic islands, which have been worn by the waves and pared all round into perpendicular cliffs of one or two thousand feet in height; for the gentle slope of the lava-streams, due to their formerly liquid state, showed at a glance how far the hard, rocky beds had once extended into the open ocean. The same story is still more plainly told by faults,—those great cracks along which the strata have been upheaved on one side, or thrown down on the other, to the height or depth of thousands of feet; for since the crust cracked, the surface of the land has been so completely planed down by the action of the sea, that no trace of these vast dislocations is externally visible.

The Craven fault, for instance, extends for upwards of 30 miles, and along this line the vertical displacement of the strata has varied from 600 to 3000 feet. Prof. Ramsay has published an account of a downthrow in Anglesea of 2300 feet; and he informs me that he fully believes there is one in Merionethshire of 12,000 feet;. yet in these cases there is nothing on the surface to show such prodigious movements; the pile of rocks on the one or other side having been smoothly swept away. The consideration of these facts impresses my mind almost in the same manner as does the vain endeavour to grapple with the idea of eternity.

I am tempted to give one other case, the well-known one of the denudation of the Weald. Though it must be admitted that the denudation of the Weald has been a mere trifle, in comparison with that which has removed masses of our palaeozoic strata, in parts ten thousand feet in thickness, as shown in Prof. Ramsay's masterly memoir on this subject: yet it is an admirable lesson to stand on the intermediate hilly country and look on the one hand at the North Downs, and on the other hand at the South Downs; for, remembering that at no great distance to the west the northern and southern escarpments meet and close, one can safely picture to oneself the great dome of rocks which must have covered up the Weald within so limited a period as since the latter part of the Chalk formation. The distance from the northern to the southern Downs is about 22 miles, and the thickness of the several formations is on an average about 1100 feet, as I am informed by Prof. Ramsay. But if, as some geologists suppose, a range of older rocks underlies the Weald, on the flanks of which the overlying sedimentary deposits might have accumulated in thinner masses than elsewhere, the above estimate would be erroneous; but this source of doubt probably would not greatly affect the estimate as applied to the western extremity of the district. If, then, we knew the rate at which the sea commonly wears away a line of cliff of any given height, we could measure the time requisite to have denuded the Weald. This, of course, cannot be done; but we may, in order to form some crude notion on the subject, assume that the sea would eat into cliffs 500 feet in height at the rate of one inch in a century. This will at first appear much too small an allowance; but it is the same as if we were to assume a cliff one yard in height to be eaten back along a whole line of coast at the rate of one yard in nearly every twenty-two years. I doubt whether any rock, even as soft as chalk, would yield at this rate excepting on the most exposed coasts; though no doubt the degradation of a lofty cliff would be much more rapid from the breakage of the fallen fragments. On the other hand, I do not believe that any line of coast, ten or twenty miles in length, ever suffers degradation at the same time along its whole indented length; and we must remember that almost all strata contain harder layers or nodules, which from long resisting attrition form a breakwater at the base. We may at least confidently believe that no rocky coast 500 feet in height commonly yields at the rate of a foot per century; for this would be the same in amount as a cliff one yard in height retreating twelve yards in twenty-two years; and no one, I think, who has carefully observed the shape of old fallen fragments at the base of cliffs, will admit any near approach to such rapid wearing away. Hence, under ordinary circumstances, I should infer that for a cliff 500 feet in height, a denudation of one inch per century for the whole length would be a sufficient allowance. At this rate, on the above data, the denudation of the Weald must have required 306,002,400 years; or say three hundred million years. Bat perhaps it would be safer to allow two or three inches per century, and this would reduce the number of years to one hundred and fifty or one hundred million years.''

The action of fresh water on the gently inclined Wealden district, when upraised, could hardly have been great, but it would somewhat reduce the above estimate. On the other hand, during oscillations of level, which we know this area has undergone, the surface may have existed for millions of years as land, and thus have escaped the action of the sea: when deeply submerged for perhaps equally long periods, it would, likewise, have escaped the action of the coastwaves.

I have made these few remarks because it is highly important for us to gain some notion, however imperfect, of the lapse of years. During each of these years, over the whole world, the land and the water has been peopled by hosts of living forms. What an infinite number of generations, which the mind cannot grasp, must have succeeded each other in the long roll of years I Now turn to our richest geological museums, and what a paltry display we behold 1

On the poorness of our Paloeontological collections.— That our palaeontological collections are very imperfect, is admitted by every one. The remark of that admirable

* I have left the foregoing passages as they stand in the second edition, but I confess that an able and justly severe article, since published in the Saturday Review (Dec. 24th, 1859), shows that I have been rash. I havo not sufficiently allowed for the softness of the strata underlying the chalk; the remarks made are more truly applicable to denuded areas composed of hard rocks. Nor have I allowed for the denudation going on on both sides of the ancient Weald-Bay; but the circumstance of the denudation having taken place within a protected bay would prolong the process. It has long been my habit to observe the shape and state of surface of the fragments at the bases of lofty retreating cliffs, and I can find no words too strong to express my conviction of the extreme slowness with which they are worn away and removed. I beg the reader to observe that I have expressly stated that we cannot know at what rate the sea wears away a line of cliff: I assumed the one inch per century in order to gain some crude idea of the lapse of years; but I always supposed that the reader would double or quadruple or increase in any proportion which seemed to him fair the probable rate of denudation per century. But I own that I have been rash and unguarded in the calculation.

« 이전계속 »