페이지 이미지
PDF
ePub

conditions than those now occurring; and such changes would have tended to induce changes at a corresponding rate in the organisms which then existed. To the question why we do not find rich fossiliferous deposits belonging to these assumed earliest periods prior to the Cambrian system, I can give no satisfactory answer. Several eminent geologists, with Sir R. Murchison at their head, were until recently convinced that we beheld in the organic remains of the lowest Silurian stratum the first dawn of life. Other highly competent judges, as Lyell and E. Forbes, have disputed this conclusion. We should not forget that only a small portion of the world is known with accuracy. Not very long ago M. Barrande added another and lower stage, abounding with new and peculiar species, beneath the then known Silurian system; and now, still lower down in the Lower Cambrian formation, Mr. Hicks has found in South Wales beds rich in trilobites, and containing various molluscs and annelids. The presence of phosphatic nodules and bituminous matter, even in some of the lowest azoic rocks, probably indicates life at these periods; and the existence of the Eozoon in the Laurentian formation of Canada is generally admitted. There are three great series of strata beneath the Silurian system in Canada, in the lowest of which the Eozoon is found. Sir W. Logan states that their “united thickness may possibly far surpass that of all the “succeeding rocks, from the base of the palaeozoic series to the “present time. We are thus carried back to a period so remote, “that the appearance of the so-called Primordial fauna (of “Barrande) may by some be considered as a comparatively “modern event.” The Eozoon belongs to the most lowly organised of all classes of animals, but is highly organised for its class; it existed in countless numbers, and, as Dr. Dawson has remarked, certainly preyed on other minute organic beings, which must have lived in great numbers. Thus the words, which I wrote in 1859, about the existence of living beings long before the Cambrian period, and which are almost the same with those since used by Sir W. Logan, have proved true. Nevertheless, the difficulty of assigning any good reason for the absence of vast piles of strata rich in fossils beneath the Cambrian system is very great. It does not seem probable that the most ancient beds have been quite worn away by denudation, or that their fossils have been wholly obliterated by metamorphic action, for if this had been the case we should have found only small remnants of the formations next succeeding them in age, and these would always have existed in a partially metamorphosed condition. But the descriptions which we possess of the Silurian deposits over immense territories in Russia and in North America, do not

[graphic]

support the view, that the older a formation is, the more invariably it has suffered extreme denudation and metamorphism. The case at present must remain inexplicable; and may be truly urged as a valid argument against the views here entertained. To show that it may hereafter receive some explanation, I will give the following hypothesis. From the nature of the organic remains which do not appear to have inhabited profound depths, in the several formations of Europe and of the United States; and from the amount of sediment, miles in thickness, of which the formations are composed, we may infer that from first to last large islands or tracts of land, whence the sediment was derived, occurred in the neighbourhood of the now existing contiments of Europe and North America. The same view has since been maintained by Agassiz and others. But we do not know what was the state of things in the intervals between the several successive formations; whether Europe and the United States during these intervals existed as dry land, or as a submarine surface near land, on which sediment was not deposited, or as the bed of an open and unfathomable sea. Looking to the existing oceans, which are thrice as extensive as the land, we see them studded with many islands; but hardly one truly oceanic island (with the exception of New Zealand, if this can be called a truly oceanic island) is as yet known to afford even a remnant of any palaeozoic or secondary formation. Hence we may perhaps infer, that during the palaeozoic and secondary periods, neither continents nor continental islands existed where our oceans now extend; for had they existed, palaeozoic and secondary formations would in all probability have been accumulated from sediment derived from their wear and tear; and these would have been at least partially upheaved by the oscillations of level, which must have intervened during these enormously long periods. If then we may infer anything from these facts, we may infer that, where our oceans now extend, oceans have extended from the remotest period of which we have any record; and on the other hand, that were continents now exist, large tracts of land have existed, subjected no doubt to great oscillations of level, since the Cambrian period. The coloured map appended to my volume on Coral Reefs, led me to conclude that the great oceans are still mainly areas of subsidence, the great archipelagoes still areas of oscillations of level, and the continents areas of elevation. But we have no reason to assume that things have thus remained from the beginning of the world. Our continents seem to have been formed by a preponderance, during many oscillations of level, of the force of elevation; but may not the areas of preponderant movement have changed in the lapse of ages? At a period long antecedent to the Cambrian epoch,

[graphic]
[graphic]

continents may have existed where oceans are now spread out; and clear and open oceans may have existed where our continents now stand. Nor should we be justified in assuming that if, for instance, the bed of the Pacific Ocean were now converted into a continent we should there find sedimentary formations in a recognisable condition older than the Cambrian strata, supposing such to have been formerly deposited; for it might well happen that strata which had subsided some miles nearer to the centre of the earth, and which had been pressed on by an enormous weight of superincumbent water, might have undergone far more metamorphic action than strata which have always remained nearer to the surface. The immense areas in some parts of the world, for instance in South America, of naked metamorphic rocks, which must have been heated under great pressure, have always seemed to me to require some special explanation; and we may perhaps believe that we see in these large areas, the many formations long anterior to the Cambrian epoch in a completely metamorphosed and denuded condition. The several difficulties here discussed, namely—that, though we find in our geological formations many links between the species which now exist and which formerly existed, we do not find infinitely numerous fine transitional forms closely joining them all together;-the sudden manner in which several groups of species first appear in our European formations;–the almost entire absence, as at present known, of formations rich in fossils beneath the Cambrian strata, are all undoubtedly of the most serious nature. We see this in the fact that the most eminent palaeontologists, namely, Cuvier, Agassiz, Barrande, Pictet, Falconer, E. Forbes, &c., and all our greatest geologists, as Lyell, Murchison, Sedgwick, &c., have unanimously, often vehemently, maintained the immutability of species. But Sir Charles Lyell now gives the support of his high authority to the opposite side; and most geologists and palaeontologists are much shaken in their former belief. Those who believe that the geological record is in any degree perfect, will undoubtedly at once reject the theory. For my part, following out Lyell's metaphor, I look at the geological record as a history of the world imperfectly kept, and written in a changing dialect; of this history we possess the last volume alone, relating only to two or three countries. Of this volume, only here and there a short chapter has been preserved; and of each page, only here and there a few lines. Each word of the slowly-changing language, more or less different in the successive chapters, may represent the forms of life, which are entombed in our consecutive formations, and which falsely appear to have been abruptly introduced. On this view, the difficulties above discussed are greatly diminished, or even disappear.

[graphic]

CHAPTER XI.
ON THE GEOLOGICAL SUCCESSION of ORGANIC BEINGs.

On the slow and successive appearance of new species—On their different rates of change—Species once lost do not reappear—Groups of species follow the same general rules in their appearance and disappearance as do single .."5. extinction—On simultaneous changes in the forms of life throughout the world—On the affinities of extinct species to each other and to living species—On the state of development of ancient forms–On the succession of the same types within the same areas—Summary of preceding and present chapter.

LET us now see whether the several facts and laws relating to the geological succession of organic beings accord best with the common view of the immutability of species, or with that of their slow and gradual modification, through variation and natural selection. New species have appeared very slowly, one after another, both on the land and in the waters. Lyell has shown that it is hardly possible to resist the evidence on this head in the case of the several tertiary stages; and every year tends to fill up the blanks between the stages, and to make the proportion between the lost and existing forms more gradual. In some of the most recent beds, though undoubtedly of high antiquity if measured by years, only one or two species are extinct, and only one or two are new, having appeared there for the first time, either locally, or, as far as we know, on the face of the earth. The secondary formations are more broken; but, as Bronn has remarked, neither the appearance nor disappearance of the many species embedded in each formation has been simultaneous. Species belonging to different genera and classes have not changed at the same rate, or in the same degree. In the older tertiary beds a few living shells may still be found in the midst of a multitude of extinct forms. Falconer has given a striking instance of a similar fact, for an existing crocodile is associated with many lost mammals and reptiles in the sub-Himalayan deposits. The Silurian Lingula differs but little from the living species of this genus; whereas most of the other Silurian Molluscs and all the Crustaceans have changed greatly. The productions of the land seem to have changed at a quicker rate than those of the sea, of which a striking instance has been observed in Switzerland. There is some reason to believe that organisms high in the scale, change more quickly than those that are low : though there are exceptions to this rule. The amount of organic change, as

[graphic]
[graphic]

Pictet has remarked, is not the same in each successive so-called formation. Yet if we compare any but the most closely related formations, all the species will be found to have undergone some change. When a species has once disappeared from the face of the earth, we have no reason to believe that the same identical form ever reappears. The strongest apparent exception to this latter rule is that of the so-called “colonies” of M. Barrande, which intrude for a period in the midst of an older formation, and then allow the pre-existing fauna to reappear; but Lyell's explanation, namely, that it is a case of temporary migration from a distinct geographical province, seems satisfactory. These several facts accord well with our theory, which includes no fixed law of development, causing all the inhabitants of an area to change abruptly, or simultaneously, or to an equal degree. The process of modification must be slow, and will generally affect only a few species at the same time; for the variability of each species is independent of that of all others. Whether such variations or individual differences as may arise will be accumulated through natural selection in a greater or less degree, thus causing a greater or less amount of permanent modification, will depend on many complex contingencies—on the variations being of a beneficial nature, on the freedom of intercrossing, on the slowly changing physical conditions of the country, on the immigration of new colonists, and on the nature of the other inhabitants with which the varying species come into competition. Hence it is by no means surprising that one species should retain the same identical form much longer than others; or, if changing, should change in a less degree. We find similar relations between the existing inhabitants of distinct countries; for instance, the land-shells and coleopterous insects of Madeira have come to differ considerably from their nearest allies on the continent of Europe, whereas the marine shells and birds have remained unaltered. We can perhaps understand the apparently quicker rate of change in terrestrial and in more highly organised productions compared with marine and lower productions, by the more complex relations of the higher beings to their organic and inorganic conditions of life, as explained in a former chapter. When many of the inhabitants of any area have become modified and improved, we can understand, on the principle of competition, and from the all-important relations of organism to organism in the struggle for life, that any form which did not become in some degree modified and improved, would be liable to extermination. Hence we see why all the species in the same region do at last, if we look to long enough intervals of time, become modified, for otherwise they would become extinct. In members of the same class the average amount of change, T

[graphic]
« 이전계속 »