ÆäÀÌÁö À̹ÌÁö
PDF
ePub

plants should do, and have a good and true digestion. Pinguioala, or butterwort, is the representative of this family upon land. It gets both its Latin and ita English name from the fatty or greasy appearance of the upper face of its broad leaves; and this appearance is due to a dense coat or pile of short-stalked glands, which secrete a colorless and extremely viscid liquid. By this small flies, or whatever may alight or fall upon the leaf, are held fast. These waifs might be useless or even injurious to the plant. Probably Mr. Darwin was the first to ask whether they might be of advantage. He certainly was the first to show that they probably are so. The evidence from experiment, shortly summed up, is, that insects alive or dead, and also other nitrogenous bodies, excite these glands to increased secretion; the secretion then becomes acid, and acquires the power of dissolving solid animal substances-that is, the power of digestion in the manner of Drosera and Dionaa. And the stalks of their glands under the microscope give the same ocu lar evidence of absorption. The leaves of the butter wort are apt to have their margins folded inward, liko a rim or hem. Taking young and vigorous leaves to which hardly anything had yet adhered, and of which the margins were still flat, Mr. Darwin set within one margin a row of small flies. Fifteen hours afterward this edge was neatly turned inward, partly covering the row of flies, and the surrounding glands were sccreting copiously. The other edge remained flat and unaltered. Then he stuck a fly to the middle of the lenf just below its tip, and soon both margins infolded, so as to clasp the object. Many other and varied

experiments yielded similar results. Even pollen, which would not rarely be lodged upon theso leaves, as it falls from surrounding wind-fertilized plants, also small seeds, excited the same action, and showed signs of being acted upon. "We may therefore conclude," with Mr. Darwin, "that Pinguicula vulgaris, with its small roots, is not only supported to a large extent by the extraordinary number of insects which it habitually captures, but likewise draws some nourishment from the pollen, leaves, and seeds, of other plants which often adhere to its leaves. It is, therefore, partly a vegetable as well as an animal feeder."

What is now to be thought of the ordinary glandular hairs which render the surface of many and the most various plants extremely viscid? Their number is legion. The Chinese primrose of common garden and house culture is no extraordinary instance; but Mr. Francis Darwin, counting those on a small spaco measured by the micrometer, estimated them at 65,371 to the square inch of foliage, taking in both surfaces of the leaf, or two or three millions on a moderate-sized specimen of this small herb. Glands of this sort were loosely regarded as organs for excretion, without much consideration of the question whether, in vegetable life, there could be any need to excrete, or any advantage gained by throwing off such products; and, while the popular name of catch-fly, given to several common species of Silene, indicates long familiarity with the fact, probably no one ever imagined that tho swarms of small insects which perish upon these sticky surfaces wero.ever turned to account by the plant. In many such cases, no doubt they perish as uselessly

as when attracted into the flame of a candle. In the tobacco-plant, for instance, Mr. Darwin could find no ovidence that the glandular hairs absorb animal mat ter. But Darwinian philosophy expects all gradations between casualty and complete adaptation. It is most probable that any thin-walled vegetable structure which secretes may also be capable of absorbing under favorable conditions. The myriads of exquisitelyconstructed glands of the Chinese primrose are not likely to be functionless. Mr. Darwin ascertained by direct experiment that they promptly absorb carbonate of ammonia, both in watery solution and in vapor. So, since rain-water usually contains a small percentage of ammonia, a use for these glands becomes apparent-one completely congruous with that of absorbing any animal matter, or products of its decomposition, which may come in their way through the occasional entanglement of insects in their viscid secretion. In several saxifrages-not very distant relatives of Drosera-the viscid glands equally manifested the power of absorption.

To trace a gradation between a simply absorbing hair with a glutinous tip, through which the plant may perchance derive slight contingent advantage, and the tentacles of a sundew, with their exquisite and associated adaptations, does not much lessen the wonder nor explain the phenomena. After all, as Mr. Darwin modestly concludes, "we see how little has been mado out in comparison with what remains unex plained and unknown." But all this must be allowed to be an important contribution to the doctrine of tho gradual acquirement of uses and functions, and

hardly to find conceivable explanation upon any other hypothesis.

There remains one more mode in which plants of the higher grado are known to prey upon animals; namely, by means of pitchers, urns, or tubes, in which insects and the like are drowned or confined, and either macerated or digested. To this Mr. Darwin barely alludes on the last page of the present volume. Tho main facts known respecting the American pitcherplants have, as was natural, been ascertained in this country; and we gave an abstract, two years ago, of our then incipient knowledge. Much has been learned since, although all the observations have been of a desultory character. If spaco permitted, an instructivo narrative might be drawn up, as well of the economy of the Sarracenias ns of how we came to know what we do of it. But the very little we have room for will be strictly supplementary to our former article.

The pitchers of our familiar Northern Sarracenia, which is likewise Southern, are open-mouthed; and, although they certainly secrete some liquid when young, must derive most of the water they ordinarily contain from rain. How insects are attracted is unknown, but tho water abounds with their drowned bodies and decomposing remains.

In the more southern S. flava, the long and trumpet-shaped pitchers evidently depend upon the liquid which they themselves secrete, although at maturity, when the hood becomes erect, rain may somewhat add to it. This species, as wo know, allures insects by a peculiar sweet exudation within the orifice; they fall in and perish, though seldom by drowning, yet few

are able to escape; and their decomposing remains accumulate in the narrow bottom of the vessel. Two other long-tubed species of the Southern States are similar in these respects. There is another, S. psittacina, the parrot-headed species, remarkable for the cowl-shaped hood so completely inflexed over the mouth of the small pitcher that no rain can possibly enter. Little is known, however, of the efficiency of this species as a fly-entcher; but its conformation ins a morphological interest, leading up, as it does, to the Californian type of pitcher presently to be mentioned.

But the remaining species, S. variolaris, is the most wonderful of our pitcher-plants in its adaptations for the capture of insects. The inflated and mottled lid or hood overarches the ample orifice of the tubular pitcher sufliciently to ward off the rain, but not to obstruct the free access of flying insects. Flies, ants, and most insects, glide and fall from the treacherous smooth throat into the deep well below, and never escape. They are allured by a sweet secretion just within the orifice-which was discovered and described long ago, and the knowledge of it wellnigh forgotten until recently. And, finally, Dr. Mellichamp, of South Carolina, two years ago made the capital discovery that, during the height of the season, this lure extends from the orifice down nearly to the ground, a length of a foot or two, in the form of a honeyed line or narrow trail on the edge of the wing-like border which is conspicuous in all these species, although only in this one, so far as known, turned to such account. Here, one would say, is a special adaptation to ants and such ter restrial and creeping insects. Well, long before this

« ÀÌÀü°è¼Ó »