페이지 이미지
PDF

reduce this notion of a horse that we now have, to some such kind of simple expressions as can be at once, and without difficulty, retained in the mind, apart from all minor details. If I make a transverse section, that is, if I were to saw a dead horse across, I should find that, if I left out the details, and supposing I took my section through the anterior region, and through the fore-limbs, I should have here this kind of section of the body (Fig. 1). Here would be the upper part of the animal—that great mass of bones that we spoke of as the spine (a, Fig. 1). Here I should have the alimentary canal (b. Fig. 1). Here I should have the heart (c, Fig. 1); and then you see, there would be a kind of double tube, the whole being inclosed within the hide; the spinal marrow would be placed in the upper tube (a, Fig. 1), and in the lower tube (d. d, Fig. 1), there would be the alimentary canal (), and the heart (c); and here I shall have the legs proceeding from each side. For simplicity's sake. I represent them merely as stumps (e e, Fig. 1). Now that is a horse—as mathematicians would say—reduced to its most simple expression. Carry that in your minds, if you please, as a simplified idea of the structure of the horse. The considerations which I have now put before you belong to what we technically call the “Anatomy” of the horse. Now, suppose we go to work upon these several parts, flesh and hair, and skin and bone, and lay open these various organs with our scalpels, and examine them by means of our magnifying-glasses, and see what we can make of them. We shall find that the flesh is made up of bundles of strong fibres. The brain and nerves, too, we shall find, are made up of fibres, and these queer-looking things that are called ganglionic corpuscles. If we take a slice of the bone and examine it, we shall find that it is very like this diagram of a section of the bone of on ostrich, though differing, of course, in some details; and if we take any part whatsoever of the tissue, and examine it, we shall find it all has a minute structure, visible only under the microscope. All these parts constitute microscopic anatomy or “Histology.” These parts are constantly being changed; every part is constantly growing, decaying, and being replaced during the life of the animal. The tissue is constantly replaced by new material; and if you go back to the young state of the tissue in the case of muscle, or in the case of skin, or any of the organs I have mentioned, you will find that

[graphic]
[graphic]
[graphic]

they all come under the same condition. Every one of these microscopic filaments and fibres (I now speak merely of the general character of the whole process)—every one of these parts—could be traced down to some modification of a tissue which can be readily divided into little particles of fleshy matter, of that substance which is composed of the chemical elements, carbon, hydrogen, oxygen, and nitrogen, having such a shape as this (Fig. 2). These particles, into which all primitive tissues break up, are called cells. If I were to make a section of a piece of the skin of my hand, I should find that it was made up of these cells. If I examine the fibres which form the various organs of all living animals, I should find that all of them, at one time or other, had been formed out of a substance consisting of similar elements; so that you see, just as we reduced the whole body in the gross to that sort of simple expression given in Fig. 1, so we may reduce the whole of the microscopic structural elements to a form of even greater simplicity; just as the plan of the whole body may be so represented in a sense (Fig. 1), so the primary structure of every tissue may be represented by a mass of cells (Fig. 2). Having thus, in this sort of general way, sketched to you what I may call, perhaps, the architecture of the body of the horse (what we

Fig.2.

[graphic]
[graphic]
[graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic]
[graphic]
[graphic]
[graphic]

term technically its Morphology), I must now turn to another aspect. A horse is not a mere dead structure: it is an active, living, working machine. Hitherto we have, as it were been looking at a steam-engine with the fires out, and nothing in the boiler; but the body of the living animal is a beautifully-formed active machine, and every part has its different work to do in the working of that machine, which is what we call its life. The horse, if you see him after his day's work is done, is cropping the grass in the fields, as it may be, or munching the oats in his stable. What is he doing? His jaws are working as a mill—and a very complex mill too-grinding the corn, or crushing the grass to a pulp. As soon as that operation has taken place, the food is passed down to the stomach, and there it is mixed with the chemical fluid called the gastric juice, a substance which has the peculiar property of making soluble and dissolving out the nutritious matter in the grass, and leaving behind those parts which are not nutritious; so that you have, first, the mill, then a sort of chemical digester; and then the food, thus partially dissolved, is carried back by the muscular contractions of the intestines into the hinder parts of the body, while the soluble portions are taken up into the blood. The blood is contained in a vast system of pipes, spreading through the whole body, connected with a forcepump-the heart-which, by its position and by

[graphic][graphic]
[graphic]
[graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic][graphic]
[graphic]
[graphic]

the contractions of its valves, keeps the blood constantly circulating in one direction, never allowing it to rest ; and then, by means of this circulation of the blood, laden as it is with the products of digestion, the skin, the flesh, the hair, and every other part of the body, draws from it that which it wants, and every one of these organs derives those materials which are necessary to enable it to do its work. The action of each of these organs, the performance of each of these various duties, involve in their operation a continual absorption of the matters necessary for their support, from the blood, and a constant formation of waste products, which are returned to the blood, and conveyed by it to the lungs and the kidneys, which are organs that have allotted to them the office of extracting, separating, and getting rid of these waste products; and thus the general nourishment, labour, and repair of the whole machine are kept up with order and regularity. But not only is it a machine which feeds and appropriates to its own support the nourishment necessary to its existence—it is an engine for locomotive purposes. The horse desires to go from one place to another; and to enable it to do this, it has those strong contractile bundles of muscles attached to the bones of its limbs, which are put in motion by means of a sort of telegraphic apparatus formed by the brain and the great spinal cord running through the spine or

[graphic]
« 이전계속 »