페이지 이미지
PDF
ePub

animals to one another. The horse is a very welldefined matter-of-fact sort of animal, and we are all pretty familiar with its structure. I dare say it may have struck you, that it resembles very much no other member of the animal kingdom, except perhaps the zebra or the ass. Butlet me ask you to look along these diagrams. Here is the skeleton of the horse, and here the skeleton of the dog. You will notice that we have in the horse a skull, a backbone and ribs, shoulder-blades and haunch-bones. In the fore-limb, one upper arm-bone, two fore arm-bones, wrist-bones (wrongly called knee), and middle hand-bones, ending in the three bones of a finger, the last of which is sheathed in the horny hoof of the fore-foot : in the hind-limb, one thigh-bone, two leg-bones, anklebones, and middle foot-bones, ending in the three bones of a toe, the last of which is encased in the hoof of the hind-foot. Now turn to the dog's skeleton. We find identically the same bones, but more of them, there being more toes in each foot, and hence more toe-bones. Well, that is a very curious thing The fact is that the dog and the horse—when one gets a look at them without the outward impediments of the skin—are found to be made in very much the same sort of fashion. And if I were to make a transverse section of the dog, I should find the same organs that I have already shown you as forming parts of the horse. Well, here is another

[subsumed][graphic]

skeleton—that of a kind of lemur—you see he has just the same bones; and if I were to make a transverse section of it, it would be just the same again. In your mind's eye turn him round, so as to put his backbone in a position inclined obliquely upwards and forwards, just as in the next three diagrams, which represent the skeletons of an orang, a chimpanzee, and a gorilla, and you find you have no trouble in identifying the bones throughout ; and lastly turn to the end of the series, the diagram representing a man's skeleton, and still you find no great structural feature essentially altered. There are the same bones in the same relations. From the horse we pass on and on, with gradual steps until we arrive at last at the highest known forms. On the other hand, take the other line of diagrams, and pass from the horse downwards in the scale to this fish; and still, though the modifications are vastly greater, the essential framework of the organisation remains unchanged. Here, for instance, is a porpoise: here is its strong backbone, with the cavity running through it, which contains the spinal cord; here are the ribs, here the shoulderblade; here is the little short upper-arm bone, here are the two forearm bones, the wrist-bone, and the finger-bones. Strange, is it not, that the porpoise should have in this queer-looking affair—its flapper (as it is called), the same fundamental elements as the fore-leg of the horse or the dog, or the ape or man; and here you will notice a very curious thing—the hinder limbs are absent. Now, let us make another jump. Let us go to the codfish: here you see is the forearm, in this large pectoralfin —carrying your mind's eye onward from the flapper of the porpoise. And here you have the hinder limbs restored in the shape of these ventral fins. If I were to make a transverse section of this, I should find just the same organs that we have before noticed. So that, you see, there comes out this strange conclusion as the result of our investigations, that the horse, when examined and compared with other animals, is found by no means to stand alone in Nature; but that there are an enormous number of other creatures which have backbones, ribs, and legs, and other parts arranged in the same general manner, and in all their formation exhibiting the same broad peculiarities. I am sure that you cannot have followed me even in this extremely elementary exposition of the structural relations of animals, without seeing what I have been driving at all through, which is, to show you that, step by step, naturalists have come to the idea of a unity of plan, or conformity of construction, among animals which appeared at first sight to be extremely dissimilar. And here you have evidence of such a unity of plan among all the animals which have backbones,

[graphic]
[graphic]

and which we technically call Vertebrata. But there are multitudes of other animals, such as crabs, lobsters, spiders, and so on, which we term Annulosa. In these I could not point out to youthe parts that correspond with those of the horsethe backbone, for instance,—as they are constructed upon a very different principle, which is also common to all of them; that is to say, the lobster, the spider, and the centipede, have a common plan running through their whole arrangement, in just the same way that the horse, the dog, and the porpoise assimilate to each other. Yet other creatures—whelks, cuttlefishes, oysters, snails, and all their tribe (Mollusca)— resemble one another in the same way, but differ from both Vertebrata and Annulosa; and the like is true of the animals called Colenterata (Polypes) and Protozoa (animalcules and sponges). Now, by pursuing this sort of comparison, naturalists have arrived at the conviction that there are, some think five, and some seven, but certainly not more than the latter number—and perhaps it is simpler to assume five–distinct plans or constructions in the whole of the animal world; and that the hundreds of thousands of species of creatures on the surface of the earth, are all reducible to those five, or, at most, seven, plans of organisation. But can we go no further than that When one has got so far, one is tempted to go on a step and inquire whether we cannot go back yet further and bring down the whole to modifications of one primordial unit. The anatomist cannot do this; but if he call to his aid the study of development, he can do it. For we shall find that, distinct as those plans are, whether it be a porpoise or man, or lobster, or any of those other kinds I have mentioned, every one begins its existence with one and the same primitive form, that of the egg, consisting, as we have seen, of a nitrogenous substance, having a small particle or nucleus in the centre of it. Furthermore, the earlier changes of each are substantially the same. And it is in this that lies that true “unity of organisation” of the animal kingdom which has been guessed at and fancied for many years; but which it has been left to the present time to be demonstrated by the careful study of development. But is it possible to go another step further still, and to show that in the same way the whole of the organic world is reducible to one primitive condition of form 2 Is there among the plants the same primitive form of organisation, and is that identical with that of the animal kingdom The reply to that question, too, is not uncertain or doubtful. It is now proved that every plant begins its existence under the same form; that is to say, in that of a cell—a particle of nitrogenous matter having substantially the same conditions.

[graphic]

So that if you trace back the oak to its first

[graphic]
« 이전계속 »