페이지 이미지
PDF
ePub

sensible of the impression of any sound conveyed through the mouth, the teeth, or the head: if you put one end of a small stick or rod in the mouth, and touch with the other extremity a watch lying on the table, the beatings will become quite audible, though the ears be actually shut. So, also, if a log of wood be scratched at one end with a piu, a person who applies his ear to the other end will hear the sound distinctly.

Fogs and falling rain, but especially snow, powerfully obstruct the free propagation of sound; and the same effect is produced by a coating of fresh-fallen snow on the ground, though when glazed and hardened at the surface by freezing, it has no such influence.

Over water or a surface of ice, sound is propagated with remarkable clearness and strength. Dr. Hutton relates, that on a quiet part of the Thames, near Chelsea, he could hear a person distinctly at 140 feet distance, while on the land the same could only be heard at 76 feet. Lieutenant Forster, in the third Polar expedition of Captain Parry, held a conversation with a man across the harbour of Port Bowen, a distance of 6696 feet, or about a mile and a quarter. This, however remarkable, falls short of what is related by Dr. Young, on the authority of the Rev. W. Derham, viz. that, at Gibraltar, the voice has been heard ten miles, perhaps, across the strait.

The cannonade of a sea-fight between the English and Dutch, in 1672, was heard across England as far as Shrewsbury, and even in Wales, a distance of upwards of 200 miles from the scene of action.

At Carisbrook Castle, in the Isle of Wight, is a well 210 feet in depth, and twelve feet in diameter, into which if a pin be dropped, it will be distinctly heard to strike the water. The interior is lined with very smooth masonry.

PROGRESS OF SOUND.

A stretched string, as that of a piano-forte, may be made to vibrate not only from end to end, but in aliquot parts, the portions being separated by points of rest which interrupt the progress of the sound. This kind of effect may be shewn by shaking a long piece of cane in the air, when there will be one, two, or three points of rest, according to the mode of vibrating it.

An elastic surface has, likewise, some parts in motion and others at rest; and these parts may be made visibly distinct, by strewing pieces of bristle over them upon the sounding-board of an instrument.

When a bow is drawn across the strings of a violin, the impulses produced may be rendered evident by fixing a small steel bead upon the bow; when looked at by light or in sunshine, the bead will seem to form a series of dots during the passage of the bow.

SOUND TURNING CORNERS.

Take a common tuning-fork, strike it, and hold it, (when set in vibration,) about three or four inches from the ear, with the flat side towards it, when the sound will be distinctly heard; let a strip of card, somewhat longer than the flat of the tuning-fork, be interposed at about half an inch from the fork, and the sound will be almost entirely intercepted by it; and, if the card be alternately removed and replaced in pretty quick succession, alternations of sound and silence will be produced; proving that sound is by no means propagated with so much intensity round the edge of the card, as straight forward. Indeed, to be convinced of this fact, you have only to listen to the sound of a carriage turning a corner from the street in which you happen to be, into an adjoining one. Even

where there is no obstacle in the way, sounds are by no means equally audible in all directions from the sounding body; as you may ascertain, by holding a vibrating tuning-fork or pitch-pipe near your ear, and turning it quickly on its axis.

TO TELL THE DISTANCE OF THUNDER.

Count, by means of a watch, the number of seconds that elapse between seeing the flash of lightning and hearing the report of the thunder; allow somewhat more than five seconds for a mile, and the distance may be ascertained. Thus, say the number of seconds is 5) 20

4 miles distant;

or the distance may be estimated by remarking the number of beats of the pulse in the above interval; provided, of course, that we know the rate at which the pulse beats in a certain time. In a French work, it is stated that if the pulse beat six times, the distance of the thunder will be about 30,000 feet, or five miles and a half; thus reckoning 5,000 feet for each pulsation.

In a violent thunder-storm, when the sound instantly succeeds the flash, the persons who witness the circumstance are in some danger; when the interval is a quarter of a minute, they are secure.

HEARING BY THE TOUCH.

If a deaf person merely place the tips of his finger-nails on the window-shutters or door of a room in which instruments are playing, he may enjoy their concert of harmony.

CONVERSATION FOR THE DEAF.

If two persons stop their ears closely, they may converse with each other by holding a long stick or sticks between their teeth, or

by resting their teeth against them. The person who speaks may rest the stick against his throat or his breast; or he may rest the stick, which he holds in his teeth, against a glass tumbler or china basin into which the other speaks. The sound may also be heard when a thread is held between the teeth by both persons, so as to be somewhat stretched.

GLASS BROKEN BY THE VOICE.

On vibrating bodies, which present a large surface, the effects of sounds are very surprising. Persons with a clear and powerful voice have been known to break a drinking-glass, by singing the proper fundamental note of their voice close to it. Looking-glasses are also said to have been broken by music, the vibrations of the atoms of the glass being so great as to strain them beyond the limits of their cohesion.

FIGURES PRODUCED BY SOUND.

Stretch a sheet of wet paper over the mouth of a glass tumbler which has a footstalk, and glue or paste the paper at the edges. When the paper is dry, strew dry sand thinly upon its surface. Place the tumbler on a table, and hold immediately above it, and parallel to the paper, a plate of glass, which you also strew with sand, having previously rubbed the edges smooth with emery powder. Draw a violin bow along any part of the edges, and as the sand upon the glass is made to vibrate, it will form various figures, which will be accurately imitated by the sand upon the paper; or, if a violin or flute be played within a few inches of the paper, they will cause the sand upon its surface to form regular lines and figures.

TRANSMITTED VIBRATION.

Provide a long, flat glass ruler or rod, as in the engraving, and cement it with mastic to the edge of a drinking-glass fixed into a wooden stand; support the other end of the rod very lightly on a

[blocks in formation]

where the rod meets it, and the motions will be communicated to the rod without any change in their direction. If the apparatus be inverted, and sand be strewed on the under side of the rod, the figures will be seen to correspond with those produced on the upper surface.

DOUBLE VIBRATION.

Provide two discs of metal or glass, precisely of the same dimensions, and a glass or metal rod; cement the two discs at

their centres to the two ends of the rod, as in the engraving, and strew their upper surfaces with sand. Cause one of the discs, viz. the upper one, to vibrate by a bow, and its vibration will be exactly imitated by the lower disc, and the sand strewed over both will arrange itself in precisely the same forms on both discs. But if, separately, they do not agree in their tones, the figures on them will not correspond.

CHAMPAGNE AND SOUND.

Pour sparkling champagne into a glass until it is half full, when the glass will lose its power of ringing by a stroke upon its

« 이전계속 »