ÆäÀÌÁö À̹ÌÁö
PDF
ePub

сс

Les triangles rectangles FPM, GPM donneront, 2cx + xx + yy = aa zas + ss, &

[ocr errors]
[ocr errors]

cc + 2cx + xx + yy = aa + 2af+f, & en ôtant la premiere de la feconde, le premier membre du premier & le second du fecond, l'on aura 4cx = 4af, d'où l'on tire

/=

сх

-

a

& mettant cette valeur de f, & celle de fon quarré dans l'une des deux premieres équations, l'on

=

CCXX

aura cc — ¿cx + xx + yy — aa — 2cx+, d'où l'on

aa

tire en réduifant, tranfpofant, & divifant par aa -- cc

[blocks in formation]
[ocr errors]

Mais lorsque le point P tombe en C, PM (y) devient CD, & ( x ) devient nulle, ou = 0; c'eft pour

quoi en effaçant le terme xx, l'on a aa

=

aa

aayy

[merged small][merged small][ocr errors][merged small]

= +CD: nommant

a-c

— cc = yy = CD', & partant y donc CD, b; l'on a, aa-cc= cc = bb; d'où l'on tire a (AF). b(CD) :: b (CD). a + c ( FB). Qui eft une des chofes qu'il faloit démontrer. Or mettant 66 dans l'é-`

[blocks in formation]

Et comme cette équation eft la

que celle qu'on a trouvée (Art. 9. n°. 10.) il fuit la courbe ADBE eft une Ellipfe. Ce qui eft une des autres chofes propofées.

que

aayy

Si dans l'équation aa — xx—— , l'on faity=o, l'on

bb

aura xx aa; donc x +a, ce qui fait voir que l'Ellipfe paffe par les points A & B. Et en faisant x = o l'on a trouvé y +CD qui montre que l'Ellipfe AM passe auffi par les points D & E, en faisant CE = C D ; c'est

=

FIG. 59.

pourquoi (Art. 9. n°. 6.) AB, eft le diametre principal de I'Ellipfe; DE fon axe conjugé, & C le centre. Ce qu'il

faloit enfin démontrer.

On peut réfoudre cette équation aa — xx —

aayy

aa - cd par

le cercle. Mais il faut la changer en celle-ci aa - cc =

[merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small]

aa

autre analogie, D. a—x.a :: a. =u, & l'on aura

[merged small][ocr errors]

- ¢¢ = ༢༧.

pas

41x

Pour trouver toutes les inconnues, u, x, y, z, 10. d'un rayon qui ne foit moindre que la moitié d'AB = 2a décrivez le cercle ABG, infcrivez-y la corde AB—2a, fur laquelle vous prendrez AD= a + c,&DB=a—c par le point D menez une autre corde EG. Et parce que dans l'analogie D, a eft plus petit que u, il faut prendre DG u plus grand que AB.

A préfent pour avoir x, à cause de l'analogie D, on aura au -xu = aа, ou, au aaux ; ainfi nous aurons cette analogie E. u. a :: a. x. On trouvera x en faisant FIG. 60. l'angle CAF, & prenant AF = u, BF — u — a, AC les paralleles CF & BD menées, donnent DC=x. Enfin pour avoir y, menez, à caufe de l'analogie B, la ligne AB, fur laquelle vous prendrez AD = a + x (AK+DC), DB=z. De C milieu de AE, & de l'intervalle AC ou CB, décrivez le demi cercle ALB, la perpendiculaire DL = y.

FIG. 61.

FIG. 58.

DEFINITIONS.

1. LES
s points F & G font nommez les foyers de l'Ellip-
fe; CP, l'abciffe, ou coupée, & PM, ou Pm l'ordonnée, ou
l'appliquée à l'axe AB.

COROLLAIRE I.

2. IL eft clair que les lignes FM, GM menées des foyers à la circonference de l'Ellipfe font, par la defcription, ensemble égales à l'axe AB, & que PM = Pm.

COROLLAIRE I I.

3. est IL eft auffi évident que le rectangle des deux parties AF, FB ou AG, GB de l'axe AB faites par un des foyers F, ou G, est égal au quarré du demi axe conjugué DC: car dans la Démonftration précedente l'on a trouvé aa cc CD. Or aa cc = a + c x a—c, AF x

FB CD. =

4.

bb

COROLLAIRE

I I I.

ON voit par les termes de l'équation aa — xx — aayy & par les fignes + & qui les précedent que x croiffant, y diminue : car plus x devient grande, plus aa - xx diminue, & par confequent aussi yy; puifque les quantitez conftantes aa, & bb demeurent toujours de même grandeur; ce qui fait voir que les points M & m de l'Ellipfe, s'approchent d'autant plus de l'axe AB, que le point P s'éloigne de C. On voit auffi que l'on ne peut augmenter x que jufqu'à ce qu'elle devienne = a; auquel xx devient =aa aa = 0; & par confequent auffi y=0, ce qui fait voir que les points M & m fe confondent alors avec les points A & B, & que l'Ellipfe coupe l'axe en ces points, comme on a déja remarqué.

cas da

[ocr errors]

COROLLAIRE IV.

ладу
bb

5. L'EQUATION à l'Ellipse aa — xx — ^^?” étant réduite en analogie donne aa—xx (AP × PB). yy (PM2) :: aa ( AC2) . bb (CD2) :: 4aa ( AB2 ) 4bb ( DE2), c'està-dire que le rectangle des deux parties AP, PB de

l'axe AB faites par l'appliquée PM est au quarré de l'appliquée PM: comme le quarré de l'axe AB est au quarré de l'axe conjugué DE.

24

=

[ocr errors]

266

A

[blocks in formation]

124

56

6. SI l'on fait, AB (2a). DE (2b) :: DE (2b). 266, la ligne que je nomme p.p fera (Art. 9. n°. 13,) le parametre de l'axe AB. Or puifque a. b::b. p, l'on a auffia.p: aa. bb; donc abb = 1⁄2 aap; donc a C'est pourquoi fi l'on met dans l'équation aa ay, en la place de , fa valeur 27, l'on aura aa - xx⇒ za; d'où l'on tire cette analogie aa — xx ( AP × PB ). yy ( PM2):: 2a ( AB). p, c'est-àdire que le rectangle des deux parties de l'axe faites par l'appliquée, eft au quarré de l'appliquée, comme le même axe, eft à fon parametre.

aayy

66

[ocr errors]
[blocks in formation]

7. IL fuit du Corollaire précédent que le rectangle de l'axe AB par fon parametre est égal au quarré de l'axe conjugué DE; puifque AB. DE:: DE. p.

COROLLAIRE VII.

aa

24

8. SI au lieu de ou de on met un autre raport

m

bb

P

égal comme l'on aura, aa— xx=

[ocr errors]
[ocr errors]
[merged small][merged small][ocr errors][merged small][merged small]

quoi l'on fera fur l'équation à l'Ellipfe les trois remarques fuivantes, après avoir délivré l'un des quarrez inconnus qu'elle renferme de toute quantité connue.

[blocks in formation]

9. LORSQUE l'antécédent du raport qui accompagne un des quarrez inconnus de l'équation à l'Ellipfe eft égal & semblable au terme connu; ou ce qui eft la même chofe, fi cet antécédent renferme les mêmes lettres que

le

le terme connu de l'équation; fa racine quarrée exprimera le demi diametre dont l'autre inconnue exprime les parties; & la racine quarrée du conféquent exprimera le demi diametre conjugué.

REMARQUE I L

10. LORSQUE cet antecedent eft le double de la racine quarrée du terme connu, il exprimera le diametre dont l'autre inconnue exprime les parties; & le conféquent exprimera fon parametre.

II.

REMARQUE I I I.

11. EN tout autre cas ce raport marque le raport du diametre, dont une partie eft exprimée par l'autre inconnue, à son parametre, ou le raport du quarré du même diametre au quarré du diametre conjugué. Tout cela est évident (no. 6 & 8).

COROLLAIRE VIII

12. D'où il fuit qu'une équation à l'Ellipfe renferme les expreffions des deux diametres conjuguez, qui forment le parallelogramme des coordonnées, ou de l'un de ces diametres, & de fon parametre, ou la raifon du quarré de l'un des diametres au quarré de l'autre, ou enfin celle de l'un des deux à fon parametre: de forte qu'on aura toujours les deux diametres conjuguez par le moyen de l'équation.

Par exemple, dans l'équation ad — xx — 44 le terme FIG. 58. connu aa eft le quarré du demi diametre AC; l'antecedent aa du raport qui accompagne yy eft femblable & égal au terme connu aa; c'est pourquoi le conféquent bb eft le quarré du demi diametre conjugé CD à l'axe ou au diametre principal AC. Dans l'équation aa — xx 247, l'antecedent 2a étant double de la racine du terme connu aa; 2a fera le diametre AB, & p fon metre:& partant, fi l'on fait 2a. p :: aa . — ap ; — ap

N

para

fera

« ÀÌÀü°è¼Ó »