Non-Self-Adjoint Boundary Eigenvalue Problems

¾ÕÇ¥Áö
Elsevier, 2003. 6. 26. - 518ÆäÀÌÁö
This monograph provides a comprehensive treatment of expansion theorems for regular systems of first order differential equations and n-th order ordinary differential equations.
In 10 chapters and one appendix, it provides a comprehensive treatment from abstract foundations to applications in physics and engineering. The focus is on non-self-adjoint problems. Bounded operators are associated to these problems, and Chapter 1 provides an in depth investigation of eigenfunctions and associated functions for bounded Fredholm valued operators in Banach spaces. Since every n-th order differential equation is equivalent
to a first order system, the main techniques are developed for systems. Asymptotic fundamental
systems are derived for a large class of systems of differential equations. Together with boundary
conditions, which may depend polynomially on the eigenvalue parameter, this leads to the definition of Birkhoff and Stone regular eigenvalue problems. An effort is made to make the conditions relatively easy verifiable; this is illustrated with several applications in chapter 10.
The contour integral method and estimates of the resolvent are used to prove expansion theorems.
For Stone regular problems, not all functions are expandable, and again relatively easy verifiable
conditions are given, in terms of auxiliary boundary conditions, for functions to be expandable.
Chapter 10 deals exclusively with applications; in nine sections, various concrete problems such as
the Orr-Sommerfeld equation, control of multiple beams, and an example from meteorology are investigated.



Key features:

• Expansion Theorems for Ordinary Differential Equations
• Discusses Applications to Problems from Physics and Engineering
• Thorough Investigation of Asymptotic Fundamental Matrices and Systems
• Provides a Comprehensive Treatment
• Uses the Contour Integral Method
• Represents the Problems as Bounded Operators
• Investigates Canonical Systems of Eigen- and Associated Vectors for Operator Functions

 

¸ñÂ÷

Chapter I Operator functions in Banach spaces
1
Chapter II First order systems of ordinary differential equations
53
Chapter III Boundary eigenvalue problems for first order systems
101
Chapter IV Birkhoff regular and Stone regular boundary eigenvalue problems
129
Chapter V Expansion theorems for regular boundary eigenvalue problems for first order systems
203
Chapter VI nth order differential equations
249
Chapter VII Regular boundary eigenvalue problems for nth order equations
279
Chapter VIII The differential equation K¥ç¥ëH¥ç
321
Chapter IX nth order differential equations and nfold expansions
389
Chapter X Applications
409
Appendix A Exponential sums
441
Bibliography
475
Notations
497
Index
499
ÀúÀÛ±Ç

±âŸ ÃâÆÇº» - ¸ðµÎ º¸±â

ÀÚÁÖ ³ª¿À´Â ´Ü¾î ¹× ±¸¹®

µµ¼­ ¹®ÇåÁ¤º¸