Application de l'algebre à la geometrie: ou Methode de démonstrer par l'algebre, les theorêmes de geometrie, & d'en résoudre & construire tous les problêmes. L'on y a joint une introduction qui contient les regles du calcul algebrique |
µµ¼ º»¹®¿¡¼
6°³ÀÇ °á°ú Áß 6 - 6°³
xl ÆäÀÌÁö
On prend ici la Soustraction indiquée pour la Soustra& tion même , ou pour la
difference des deux grandeurs qui la composent ; & l'on prend de même la
Division indiquée pour la Division même , ou pour le Quotient des deux quantitez
qui la ...
On prend ici la Soustraction indiquée pour la Soustra& tion même , ou pour la
difference des deux grandeurs qui la composent ; & l'on prend de même la
Division indiquée pour la Division même , ou pour le Quotient des deux quantitez
qui la ...
´Ù¸¥ »ç¶÷µéÀÇ ÀÇ°ß - ¼Æò ¾²±â
¼ÆòÀ» ãÀ» ¼ö ¾ø½À´Ï´Ù.
±âŸ ÃâÆÇº» - ¸ðµÎ º¸±â
ÀÚÁÖ ³ª¿À´Â ´Ü¾î ¹× ±¸¹®
aayy Ainſi algebriques angle appelle aſymptotes aura auſſi ayant ayant mené c'eſt cauſe centre cercle changer cherché connues conſtruction conſtruire COROLLA côté coupera courbe d'où l'on tire décrira décrire degré demi démontrer déterminer diametre diviſeur doit donnée égale élever équation eſt eſt une équation évanouir exemple exprime faiſant font Geometrie grandeur inconnues indéterminées l'angle l'autre l'axe l'Ellipſe l'équation l'Hyperbole l'inconnue l'origine l'une lettres ligne lorſque maniere membre mené mettant milieu moyen multiplier nombre nommé parabole parallele perpendiculaire place Plan poſition précedente premier premiere pris Problême produit prolongée proprieté puiſque puiſſance quantité quarré quelconque quotient racine raport rayon rectangle réduction rencontre ſecond Section ſera ſeront ſigne ſimple ſoit ſon ſont ſorte ſuit ſur termes Theorême tion triangles ſemblables troiſième trouver valeur veut vient